Skip to content

Press release -

New life for controversial stellar wind theory

An international research team has succeeded in identifying a specific kind of dust grain in the vicinity of cool giant stars. This means fresh impetus for Uppsala University researcher Susanne Höfner’s theory about how stars die. In the latest issue of Nature, she discusses the team’s findings.

“It is of course gratifying that my model of stellar winds is now supported by observation,” says Susanne Höfner, Professor of Astrophysics at Uppsala University. “The model previously attracted a great deal of scepticism.”

Solving the riddle of the stellar winds will help us to understand how atoms present in our environment and bodies long ago escaped the stars in which these atoms were formed.

Towards the end of its life, a star typically transforms into a cool giant star with a luminosity thousands to tens of thousands times greater than that of the Sun. This developmental stage is characterised by massive gas outflows, or stellar winds, which transport newly formed elements like carbon away from the star at an increasing rate. Small solid particles, or dust grains, that form in the outer layers of giant stars likely represent the motive force behind stellar winds. By catching a portion of the radiation emitted by a star, as a sail catches the wind, dust grains are accelerated away from the star, drawing surrounding gases with them. But the radiation plausibly should cause such powerful heating of the dust grains as would vaporise most materials present in the star’s vicinity.

Several years ago, Susanne Höfner proposed a model of how stellar winds might function given these conditions – a theory that until now has been regarded as controversial. The model requires the existence of dust grains that are just large enough to absorb the right amount of radiation. Thus would the greater part of a star’s radiation escape absorption, with the result that the grains did not overheat, with just enough being absorbed to accelerate the dust grains and, accordingly, the gas.

Just the right sort of dust grains have now been identified around a number of cool giant stars by an Australian-European research team. The results were obtained using highly advanced methods that combine high resolution, making it possible to observe the immediate vicinity of a star, with radiation analysis that allows for the measurement of dust-grain size.

“The findings are very interesting and permit us to proceed with our research into how red giants develop into white dwarfs and the relevance of a specific type of supernova that serves as an important yardstick in connection with investigations into the evolution of the universe,” Susanne Höfner says.

Reference: Astrophysics: Fresh light on stardust. Nature 484, 172–173 (12 April 2012) | doi:10.1038/484172a

For more information, please contact Susanne Höfner, e-mail: susanne.hoefner@physics.uu.se


Related links

Topics


Uppsala University -- quality, knowledge, and creativity since 1477
World-class research and outstanding education of global benefit to society, business, and culture.
Uppsala University is one of northern Europe's highest ranked academic institutions. www.uu.se

Contacts

Elin Bäckström

Press contact Press Officer Research Education +46-18-471 17 06

Linda Koffmar

Press contact Press Officer +46 (0)18-471 19 59

Märta Gross Hulth

Press contact Press Officer +46734697946

Uppsala University - quality, knowledge, and creativity since 1477

Founded in 1477, Uppsala University is the oldest university in Sweden. With more than 50,000 students and 7,500 employees in Uppsala and Visby, we are a broad university with research in social sciences, humanities, technology, natural sciences, medicine and pharmacology. Our mission is to conduct education and research of the highest quality and relevance to society on a long-term basis. Uppsala University is regularly ranked among the world’s top universities.

Uppsala University

Dag Hammarskjölds väg 7
BOX 256, 751 05 Uppsala
Sweden

Visit our other newsrooms