Skip to content

Press release -

Artificial enzymes convert solar energy into hydrogen gas

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize the cell’s own energy, and thereby enable hydrogen gas to be produced from solar energy.

Hydrogen gas has long been noted as a promising energy carrier, but its production is still dependent on fossil raw materials. Renewable hydrogen gas can be extracted from water, but as yet the systems for doing so have limitations.

In the new article, published in the journal Energy and Environmental Science, an interdisciplinary European research group led by Uppsala University scientists describe how artificial enzymes convert solar energy into hydrogen gas. This entirely new method has been developed at the University in the past few years. The technique is based on photosynthetic microorganisms with genetically inserted enzymes that are combined with synthetic compounds produced in the laboratory. Synthetic biology has been combined with synthetic chemistry to design and create custom artificial enzymes inside living organisms.

“We’ve now been able to use the method we developed to produce enzymes that use the cell’s own energy to produce hydrogen gas,” says Adam Wegelius, a PhD student at the Department of Chemistry – Ångström Laboratory, Uppsala University.

Senior Lecturer Gustav Berggren and Professor Peter Lindblad of the same department have been jointly leading the research.

“Evolution has already developed and refined a tool for capturing sunlight through photosynthesis. And by introducing our artificial enzyme into photosynthetic cyanobacteria we can directly benefit from this efficient process, thus producing hydrogen gas from solar energy. We’ve developed a completely new method, which allows us to go beyond the solutions offered by evolution and nature, in our development of artificial enzymes” Berggren says.

The article, “Generation of a functional, semisynthetic [FeFe]-hydrogenase in a photosynthetic microorganism”, was published in Energy and Environmental Science and is available at dx.doi.org/10.1039/C8EE01975D.

For more information, contact:
Gustav Berggren, tel.: +46 73 633 2698, email: gustav.berggren@kemi.uu.se
Peter Lindblad, tel.: +46 70 425 0498, email: peter.lindblad@kemi.uu.se
Adam Wegelius, tel.: +46 70 393 7119, email: adam.wegelius@kemi.uu.se

Topics


Uppsala University -- quality, knowledge, and creativity since 1477
World-class research and outstanding education of global benefit to society, business, and culture.
Uppsala University is one of northern Europe's highest ranked academic institutions. www.uu.se

Contacts

Linda Koffmar

Press contact Press Officer +46 (0)18-471 19 59

Uppsala University - quality, knowledge, and creativity since 1477

Founded in 1477, Uppsala University is the oldest university in Sweden. With more than 50,000 students and 7,500 employees in Uppsala and Visby, we are a broad university with research in social sciences, humanities, technology, natural sciences, medicine and pharmacology. Our mission is to conduct education and research of the highest quality and relevance to society on a long-term basis. Uppsala University is regularly ranked among the world’s top universities.

Uppsala University

Dag Hammarskjölds väg 7
BOX 256, 751 05 Uppsala
Sweden

Visit our other newsrooms