Gå direkt till innehåll
Felipe Cava, professor vid Institutionen för molekylärbiologi vid Umeå universitet, anknuten som forskare till Molekylär Infektionsmedicin, Sverige (MIMS), Emilio Bueno första forskningsassistent, Institutionen för molekylärbiologi, Umeå universitet.
Felipe Cava, professor vid Institutionen för molekylärbiologi vid Umeå universitet, anknuten som forskare till Molekylär Infektionsmedicin, Sverige (MIMS), Emilio Bueno första forskningsassistent, Institutionen för molekylärbiologi, Umeå universitet.

Pressmeddelande -

Upptäckt av nya potentiella målproteiner för framtida antibiotika

Bakterier är små men tuffa, delvis för att deras celler har ett skyddande cellväggsskelett. Professor Felipe Cava och hans team vid Umeå universitet och medarbetare vid Harvard Medical School, har upptäckt de länge eftersökta proteiner som behövs för att upprätthålla bakteriens cellväggsstruktur. Proteinerna utgör en mycket lovande sårbar punkt att utnyttja för framtida antibiotika. Resultaten publiceras i Nature.

– Vi fann att två bristfälligt karakteriserade proteinfamiljer, DUF368 och DedA, som är brett bevarade i alla tre stora grupper av liv, ansvarar för återvinningen av lipidbärarna. Intressant nog krävs några av dessa proteiner endast under specifika förhållanden, vilket tyder på att transportfunktionen är dynamisk och reglerad av olika miljösignaler, säger Felipe Cava, professor på Institutionen för molekylärbiologi vid Umeå universitet.

Med hjälp av modellorganismerna Vibrio cholerae och Staphylococcus aureushar teamet med infektionsforskare knutna till Laboratoriet för Molekylär Infektionsmedicin Sverige (MIMS) och Umeå Centrum för Mikrobiell Forskning (UCMR) vid Umeå universitet i samarbete med forskare från Harvard Medical School i USA gjort sin upptäckt som nu presenteras i den prestigefyllda tidskriften Nature.

Återvinning av lipidbärare är avgörande för patogena bakteriers förmåga att initiera sjukdom, vilket tyder på att selektivt rikta in sig på dessa transportörer skulle kunna vara ett hållbart och betydelsefullt tillvägagångssätt för att utveckla nya antimikrobiella medel.

Proteiner hittas i screening
Cellväggen, liksom huden på djur, är avgörande för att bakterier ska överleva. Många av våra bästa antibiotika riktar sig därför mot de proteiner som bygger och omformar denna struktur. Eftersom cellväggen är placerad på utsidan av cellmembranet som omsluter cellen måste dess byggstenar transporteras över detta membran från cytoplasman där de tillverkas. För denna överföring använder bakterier specialiserade lipidbärare, så kallade undekaprenylfosfatlipider.

När byggstenar har levererats och monterats måste lipidbäraren återvända till cytoplasman för att transportera nya enheter; emellertid har det varit en gåta, fram till i dag, vilka proteiner som hjälper dessa lipider att återvända.

Med avstamp i en in vivo-screening av tarmkoloniseringsfaktorer för V. cholerae, kunde forskarteamet identifiera ett membranprotein som innehöll den brett bevarade domänen, DUF368. Experimenten visade att vid avsaknad av DUF368-innehållande proteiner, växte båda modellbakterierna dåligt och uppvisade morfologiska defekter vilket starkt tyder på att dessa membranproteiner är involverade i cellväggsbiogenes, och särskilt i transporten av undekaprenylfosfatlipider.

Val av transportprotein dynamiskt
Eftersom återvinning av lipidbärare är en så viktig funktion var det anmärkningsvärt att DUF368-mutanter mestadels påverkades vid alkaliskt pH. Detta tyder på att det finns andra transportörer vid neutrala och sura pH-värden i cellen. En screening identifierade ett protein från DedA-familjen som ytterligare en transportör av undekaprenylfosfat. Resultaten visar på att sammanhanget styr aktiviteten kring återvinning av undekaprenylfosfat i bakterieceller.

– Bakterier upplever normalt ett brett spektrum av miljöförändringar både under frilevande förhållanden och under infektion. Valet av specifika undekaprenylfosfat-transportproteiner för att upprätthålla cellväggsstabiliteten i de olika situationerna verkar vara en adaptiv mekanism i bakterier, förklarar Emilio Bueno, postdoktor på Institutionen för molekylärbiologi vid Umeå universitet.

Idealiskt mål för antibiotikum
Återvinning av undekaprenylfosfat är ett nyckelsteg i biosyntesen av inte bara peptidoglykan, den primära strukturella komponenten i cellväggen, utan även andra cellytglykopolymerer, inklusive väggteikosyra, vissa lipopolysackaridmodifieringar och kapslar.

– Med tanke på dess omfattande och kritiska roll i underhåll av bakteriecellytor, är detta steg ett idealiskt mål för antimikrobiella medel. Dessutom, även om DUF368-proteiner är begränsade till bakterier och archaea, är DedA-familjemedlemmar allmänt förekommande i eukaryoter, inklusive människor. Därför kan våra fynd påverka förståelsen av polyprenylfosfat-transport i alla tre stora grupper av liv”, säger Felipe Cava.

Om publikationen:
Brandon Sit, Veerasak Srisuknimit, Emilio Bueno, Franz G. Zingl, Karthik Hullahalli, Felipe Cava, Matthew K. Waldor (2022) Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature (2022). https://doi.org/10.1038/s41586-022-05569-1

Läs hela artikeln i Nature: https://www.nature.com/articles/s41586-022-05569-1

Kontakt:
Felipe Cava, felipe.cava@umu.se, 090-785 67 55

Relaterade länkar

Ämnen

Kategorier


Umeå universitet
Umeå universitet
är ett av Sveriges största lärosäten med drygt 37 000 studenter och 4 700 anställda. Här finns en mångfald av utbildningar av hög kvalitet och världsledande forskning inom flera vetenskapsområden. Umeå universitet är också platsen för den banbrytande upptäckten av gensaxen CRISPR-Cas9 – en revolution inom gentekniken som tilldelats Nobelpriset i kemi.

Vid Umeå universitet är allt nära. Våra sammanhållna campus gör det lätt att mötas, samarbeta och utbyta kunskap, något som gynnar en dynamisk och öppen kultur där vi gläds åt varandras framgångar.

Kontakter

Ola Nilsson

Ola Nilsson

Kommunikatör, Umeå universitet 090-786 69 82

Umeå universitet

Med omkring 37 900 studenter och drygt 4 560 medarbetare är Umeå universitet ett av Sveriges största lärosäten. Här finns en mångfald av utbildningar och världsledande forskning inom flera vetenskapsområden. Umeå universitet är också platsen för den banbrytande upptäckten av gensaxen CRISPR-Cas9 – en revolution inom gentekniken som år 2020 tilldelades Nobelpriset i kemi.

Umeå universitet har funnits i drygt 50 år och präglas av såväl tradition och stabilitet som förändring och nytänkande. Här bedrivs utbildning och forskning på hög internationell nivå som bidrar till ny kunskap av global betydelse, där hållbarhetsmålen i Agenda 2030 utgör drivkraft och inspiration. Här finns kreativa och nytänkande miljöer som tar sig an samhällets utmaningar, och genom djupa och långsiktiga samarbeten med organisationer, näringsliv och andra lärosäten fortsätter Umeå universitet att utveckla norra Sverige som kunskapsregion.

Universitetets internationella atmosfär och våra sammanhållna campus gör det lätt att mötas, samarbeta och utbyta kunskap, något som främjar en dynamisk och öppen kultur där studenter och anställda gläds åt varandras framgångar.

Umeå campus och Konstnärligt campus ligger nära Umeås centrum och intill ett av Sveriges största och mest välrenommerade universitetssjukhus. Campus finns även i Skellefteå och Örnsköldsvik.

Vid Umeå universitet finns den högt rankade Designhögskolan, den miljöcertifierade Handelshögskolan och landets enda arkitekthögskola med konstnärlig inriktning. Här finns också Bildmuseet och Umeås science center, Curiosum. Umeå universitet är dessutom ett av Sveriges fem riksidrottsuniversitet och har ett internationellt ledande arktiskt centrum.